Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Immunol Med ; 45(4): 244-250, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1922145

ABSTRACT

Extracellular adenosine produced from ATP plays a role in energy processes, neurotransmission, and inflammatory responses. Istradefylline is a selective adenosine A2a receptor (A2aR) antagonist used for the treatment of Parkinson's disease. We previously showed using mouse models that adenosine primes hypersecretion of interleukin (IL)-17A via A2aR, which plays a role in neutrophilic inflammation models in mice. This finding suggests that adenosine is an endogenous modulator of neutrophilic inflammation. We, therefore, investigated the in vitro effect of istradefylline in humans. In the present study, using human peripheral blood mononuclear cells (PBMCs), we tested the effect of adenosine, adenosine receptor agonists and istradefylline on cytokine responses using mixed lymphocyte reaction (MLR), PBMCs, CD4+ T cells, and Candida albicans antigen (Ag)-stimulated PBMCs. We showed that adenosine and an A2aR agonist (PSB0777) promoted IL-17A and IL-8 production from human PBMCs, and istradefylline suppressed this response. In addition, istradefylline inhibited not only the IL-17A and IL-8 production induced by adenosine but also that from C. albicans Ag-stimulated PBMCs. These results indicate that adenosine-mediated IL-17A and IL-8 production plays a role in neutrophilic inflammation, against which istradefylline should be effective.


Subject(s)
Adenosine A2 Receptor Antagonists , Receptor, Adenosine A2A , Animals , Humans , Mice , Adenosine A2 Receptor Antagonists/pharmacology , Interleukin-17 , Interleukin-8/pharmacology , Purinergic P1 Receptor Antagonists/pharmacology , Leukocytes, Mononuclear , T-Lymphocytes , Adenosine/pharmacology , CD4-Positive T-Lymphocytes , Inflammation
2.
Immunol Med ; 45(3): 162-167, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1868228

ABSTRACT

B-cell but not T-cell responses have been extensively studied using peripheral blood mononuclear cells (PBMCs) obtained from patients with coronavirus disease 2019 (COVID-19). Our recent study showed that not only T-helper (Th) 17 but also Th1 cells directly produce interleukin (IL)-8, a major source of neutrophilic inflammation, which is also known to induce disseminated intravascular coagulation (DIC) in COVID-19 patients. Neutrophilic inflammation caused by IL-17A or IL-8 can be fatal; thus, therapeutic intervention is highly expected. The present study aimed to investigate the T-cell responses in the Japanese patients. We synthesized spike protein-derived 15-mer peptides that are expected to bind to HLA class II allelic products frequently observed in the Japanese population, and checked the T-cell responses in Japanese patients with COVID-19. We have found that (i) patients show marked IL-8 but not IL-17A responses; (ii) these responses are restricted by HLA-DR; and (iii) IL-8 responses are abrogated by a dopamine D2 like receptor (D2R) agonist, ropinirole, and an adenosine A2a receptor (A2aR) antagonist, istradefylline. Compounds used for the treatment of Parkinson's disease may ease DIC in COVID-19. (183 words).


Subject(s)
COVID-19 Drug Treatment , Dopamine , T-Lymphocytes , Dacarbazine , Dopamine Agonists/pharmacology , Humans , Inflammation , Interleukin-8 , Leukocytes, Mononuclear/metabolism , Purinergic P1 Receptor Antagonists , Receptor, Adenosine A2A/metabolism , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL